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Abstract An extension of Nei's analysis of diversity in a 
subdivided population is proposed for a haploid locus. 
The differentiation Gsr becomes a natural extension of 
Wright's Fsr and generalizes Weir and Cockerham's 
parameter of co-ancestry by relaxing the assumption of 
identical correlation for all the alleles. Inter- and intra- 
population variances of the estimated diversities and 
differentiation are derived. Finally, the optimal samp- 
ling strategy for measuring Gsr when a fixed number of 
individuals can be analysed is considered. It is shown 
that, at a given locus, there is a unique sample size per 
population which yields the smallest variance of Gsr, 
regardless of the number of populations studied. These 
theoretical developments are illustrated with an analysis 
of chloroplast DNA diversity in a forest tree. The results 
emphasize the necessity of sampling many populations, 
rather than many individuals per population, for an 
accurate measurement of the subdivision of gene diver- 
sity at a single locus. 

Key words Diversity �9 Differentiation �9 Variance 
Optimal design 

Introduction 

The measurement of genetic diversity in population 
surveys is part of most population genetic studies. Con- 
trary to the situation in ecology, where a variety of 
indices are used to measure diversity, the studies of 
genetic diversity usually consider only a few indices, 
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prominent among which is the gene diversity h of Nei 
(1973). This is simply defined as the probability that two 
sampled genes are different and is equally well adapted 
to haploid, diploid or polyploid genes. In a subdivided 
population, two parameters of diversity are defined, the 
average within-population diversity h s and the total 
diversity h r. The difference h r - h s is a measure of the 
extent of the differentiation among the populations. 
Moreover, the ratio of this difference to the total diver- 
sity h r, defined as Gsr by Nei (1973), measures the 
apportionment of diversity among the populations and 
is diversity independent when the number of popula- 
tions studied is large. This property makes this index 
very useful when comparisons are needed among differ- 
ent organisms or among loci. 

A method for estimating the parameters hs, h r and 
Gsr has been proposed by Nei and Chesser (1983) on the 
basis of a multinomial distribution of the alleles within 
the populations. However, the estimates only consider 
the sampling of individuals in fixed populations and not 
the sampling of populations. This restricts their useful- 
ness since direct comparisons among species are not 
possible (Cockertiam and Weir 1986). 

Here, we extend Nei's approach to the total popula- 
tion, by considering that the sampled populations con- 
stitute a first level of sampling and the individuals within 
populations a second level of sampling. This point of 
view leads to new definitions of the total and average 
diversities and a new definition of the differentiation 
parameter Gsr follows which generalizes Wright's pa- 
rameter Fsr (1943, 1951). Unbiased estimates are pro- 
posed in this setting, under assumptions similar to those 
of Nei. They are compared to other estimates in the 
literature. The two-stage sampling has already been 
considered by Weir and Cockerham using different 
methods and assumptions. These are discussed and con- 
trasted with our estimates. Note that we consider here a 
haploid locus; the study of fixation indices (the so-called 
F-statistics) will be considered in a separate paper. 

In order to study the accuracy of the estimates, we 
derive their analytical variances and we estimate them. 
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These results are expected to help investigators in the 
design of sampling schemes. More specifically, we con- 
sider the optimal strategy for the repartition of sampling 
effort within and among populations when the total 
number of individuals to be analysed is fixed and when 
an accurate measurement of the differentiation is of 
central interest. All these topics are illustrated using a 
study of chloroplast DNA diversity in European oak 
species (Petit et al. 1993). 

Definition and estimation of diversity and 
differentiation indices 

We consider a total population subdivided into a large 
number of populations in which I alleles are segregating. 
Let p~ be the frequency of the i-th allele in the general 
population and Pk~ be the frequency of the i-th allele in 
the k-th population, conditionally on this population. 
The pk~s are considered as random frequencies with 
expectation p~ and variance V~. In addition, C~j denotes 
the covariance between Pk~ and Pkj, for i vaj. Following 
Nei (1973), we define the diversity of the k-th population 
as 

having means/5 and c7 = 1 - /5 and a variance o .2 among the 
populations. If the Hardy-Weinberg equilibrium holds, 
Fsr  = (@ + o -2) (1 -/52 - 42) which generalizes as in (4). 

A stratified random sampling is used to estimate 
these indices: n populations are drawn without replace- 
ment in the general population and a sample of n k 
independent individuals is drawn from the k-th popula- 
tion. We assume that n k__>2 for each k in order to 
observe some variability within the populations. Let nk~ 
be the number of individuals in the k-th population 
having the allele i and Xki = nk]nk be the empirical 
frequency of the allele i in the population k, i _< I, k < n. 
Conditionally on the populations sampled, the set (nk~)~ 
follows a multinomial distribution with parameters n k 
and the random frequencies (Pki)~ (cf. Nei and 
Roychoudhury 1973). Let E be the general expectation, 
E k be the expectation conditionally on the k-th popula- 
tion, and E p~ be the expectation conditionally on the n 
sampled populations. We have Exki = E E  k xki = Epk i = pi 
thus x.i = n-ly~k<_, Xk~ is an unbiased estimate ofpi and 

2 
E p~ x. i  n -  l~k<_ n Pki = P.i" Moreover, Ek ~ i  Xki = 

% - 1)n[ + n;  
Considering the k-th population as fixed, its div&sity 

h k (1) is then unbiasedly estimated by 

p 2  h k = l - ~  ki" (1) 
i 

We now define the average within-population diversity 
as the expectation Eh k of h k in the general population. 
From the definition of V i as Ep2i - p2i, we get 

f~k -- nk 1 -  Xki 
n k - -  1 

and an unbiased estimate of h s = Eh k (2) may be ob- 
tained as an estimate of the empirical mean h-s = 
n-  1 ~2k_<, hk of the hk s, namely 

h s = 1 - ~, (p{ + V~) (2) 
i 

and the total diversity is defined as 

= 1 - ZP . (3) 
i 

The parameters h s and h r do not depend on the number 
n of sampled populations as in the case of Nei who 
considered empirical means and defined h s as n -1 
~k<_,hk and hr as 1 - -  ~ , i p .  2 where P.i = n - 1  ~k<_,Pki is 
the average frequency of the i-th allele for the n observed 
populations. 

Nei's differentiation parameter Gsr  is (h r -hs ) /h  r 
where h r - h  s - - Z i  n - ~ . k  ( P k i -  P. i )  2 would be the sums 
of empirical variances of the Pki s if they were directly 
observed. With (2) and (3), it now becomes 

=-  hr (4) 

f ~ s = n k ~ , n k _  1 1 - - ~ i X k i  " (6) 

It satisfies E p~ h s = hs and is therefore an unbiased estimate of Nei's 
within-population diversity in the setting of n fixed populations and a 
simple sampling procedure. The estimate 

hs= n -  ~ Z h k (7) 
k 

where hk = 1 -- Zi  x~i could have been preferred since it is based on the 
efficient estimates Xk~ of the Pki s. However, it has the bias - ~ - l h  s 
where fi = n ( ~ n ~ l )  -1 is the harmonic mean of the n~s and, after 
studying their variance in the two-stage sampling (cf. next section), we 
preferred to choose (6). Our estimate may be compared to that of Nei 
and Chesser (1983) 

(8) 

which is also an unbiased estimate of h s in our framework. Equation 
(6) is just a different way of handling unequal sample sizes. 

For the estimation of hr, we consider 

where the empirical variances are replaced by the actual /~r = 1 
ones. It no longer depends on the number of observed 
populations and may be viewed as a natural extension of 
Wright's parameter F s r  (1943, 1951). This parameter = 1 - ~ x  2 §  
satisfies Fsr  = o.~//5q for two alleles with frequencies ~ " 

1 
, ( , _ , ,  2 Z xk, x ,  

11 k$-[ i 

1 
(Xk i -  x.i) 2. (9) 

n(H 1) 



464 

If we assume that the populations are independent, 
hr = 1 - ~ i  EPkiPu for any k r l and h r is an unbiased 
estimate of h r. Note that this assumption is both a 
genetical and a population sampling condition. It is 
currently used by most authors, at least implicitly 
(Cockerham and Weir 1986; Nei 1987), and it is a 
valuable approximation for weakly dependent popula- 
tions. 

Conditionally on the sampled populations, the mean of/~r (9) is 
h- r = 1 - ~2i p2 § n-  1 (n - 1)- 1 ~-,ki(Pki -- P.i) 2. The expression (9) dif- 
fers from the estimate of h r in Nei (Nei and Chesser 1983; Nei 1987) 
where only 1 - 2~P.] is estimated by 1 - 2~x 2 +(n~) -~ ~ / 2 S  w h e n  

each nk is approximated by fi, whereas (9) estimates h T. 
An estimate of the differentiation parameter Gsr is deduced as 

CJsr = 1 - hs/~ T. (10) 

This is a biased estimate because of the dependence between hs and hr 
^ - 1  �9 . . 1 �9 ~ �9 and h r itself is not unbiased for h r . However the bias of Gsr is 

asymptotically negligible as we prove in the following under specified 
conditions. 

Nei (1986) proposed a modified version of the differentiation 
parameter, f s r  which satisfies f s r  = Y~i (n - 1)- 1 2 k  (Pki - P. i )2/hT 
where E Y~(n - 1) -1Y~k(Pkl --P.i) 2 = Y.i V/ and Ehr  = hr (3). If the 
pk~s where directly observed, this new parameter Fsr  would then be an 
estimate of our differentiation parameter Gsr (4). Moreover, it is 
estimated by F'sr = 1 - h2s/hr (Nei 1986) and is therefore equal to (10) 
if the populations have the same size. By analogy to Nei's indices, 
Lynch and Crease (1990) extended the F.sr to DNA sequences. It 
appears that their N s r  reduces to our Gsr when applied to gene 
diversity. 

For populations of the same size, Gsr is also identical to the 
estimate of Weir and Cockerham's parameter 0 (1984). In their 
approach, Wright's parameter Fsr  is generalized into 0, the correla- 
tion of alleles present in different individuals in the same population, 
and the estimation relies on an analysis of variance of indicator 
functions. In our setting, the individuals within a fixed population are 
also considered as dependent in the general population, since they 
belong to the same random population. Weir and Cockerham assume 
an identical level of dependence for any allele as a property of the 
locus. This approach may also be viewed as a model V i = O&(1 - Pi) 
for the general variance of the populations mean frequencies. In this 
model, ~2i Vi = Ohr and our Gsr (4) is actually equivalent to 0. Thus 
our definition also generalizes Weir and Cockerham's point of view 
for a haploid locus. Because of the conditional independence of the 
inidividuals within a population, we follow Nei's multinomial dis- 
tribution approach but with random populations. This multinomial 
model is the basis for the analyses of the statistical sampling effects, it 
allows for a study of the accuracy of the estimates which cannot be 
done in the analysis of variance framework as defined by Weir and 
Cockerham. 

Variance of hs and h r 

The estimate /~s may be written in the form 
l ' l -  l V ~ , k ( h  k - -  hk) q- n -  1 ~ , k ( h  k _ hs ) + hs ' where the hkS (1) 
are independent and have the same distribution. If Ep4~ 
is finite, the variance of h s follows as a sum of within- 
population and between-population variances 

Var (f~s) = n-  2 Z E Vark (hk) + n-  ~ Var (hk) 
k 

where Var k denotes the variance conditionally on 
the k-th population and Vark(hk) is determined from 
the moments of the multinomial distribution, which 

yields 

2 2 (,1,{(3 
+ 2 ( n k - 2 ) ( ~ i  P~i)+(~i P2i)} �9 

If the populations have the same size, the different terms 
Vark(l;fk) have the same distribution and the first term of 
the development of Var(hs) reduces to n-lEVark(hk). 
F u r t h e r m o r e ,  Var (hk )  = E ( h  k - hs) 2 = E ( ~ i  ( p 2 i -  p2)  _ 

Zi V/) 2 may be written as E (~i  P~i) 2 - ( 1  - hs) 2 
The within-population variance, Vari,,,.,~(hs) = n-  2 

Y'.k E V a r k ( h k ) ,  depends on the populations sizes and on 
their number n, whereas the between-population vari- 
ance, Vari,,ter(hs)= n-*Var(hk) , depends only on n. As 
Nei and Roychoudhury (1973)Amentioned , n has to be 
large for reducing Var~,,te~(hs). On the contrary, 
Vari,,,.,,(hs) is small when the subsample sizes n k are large 
or when n is large, these quantities being analogous 
weights in the expression of Vari,,m,(hs) since Vark(fik) ~-- 

- 1  3 2 2  Vari,t~(fis) of 4nk {Y',iPki -- (Y',i Pki) } for large nks and is 
the order n-  ~ when n is large. That is why from now on 
we consider only a large number of populations with 
possibly small subsample sizes. None of the two vari- 
ance terms is then predominant in the variance of/~s, 

Var(hs)= -~ ~nk(n  2 -  1) ( 3 -  2nk)E ,2 i 

(11) 

which is of the order n-1. Since the total number of 
individuals to be analysed is limited by practical con- 
straints, the subsample sizes nkmay then be rather small 
if n is large and the bias of h s remains non-negligible 
( _  fi-1 Ks). The variances of/~s and K s being of the same 
order, we then opted for h s. 

As in Nei and Roychoudhury (1973), the sampling 
variance Var (hs) is estimated by the classical formula 

1 
Var(fls) -- n(n-- ~ ~k (fzk -- ~s)2" (12) 

An estimation of the terms Var(f~k) calculated by repla- 
cing Pki with Xki provides a simple but biased estimate of 
Vari,tra(hs). In order to avoid a negative estimated value 
of this variance, an unbiased estimate is also defined 
using the estimates (nk 1)-1 2 2 - (nk Ei Xki -- 1) for ~.i Pki, 
(nk 1)- 1 (n~ -- 2)- ~ 2 3 2, 2 - -  (l'lk ~-~i X k i  - -  3nk Zi  Xk~ + ) for ~2i P~, 
and (n k 1)-1 ( n k _ 2 ) - l ( n k _ 3 ) - x  3 2 2 2 - -  [ n  k ( ~ ~ i X k i )  - -  4nk ~i  

a _ 2nk(nk_ 5) Zi  Xk 2 + (nk -- 6)] for (Zi p2i)2 if the nks are Xki 



all greater than 3. An estimate of  Varinter(fits) follows by a 
difference. 

We assumed that n is large, therefore fis converges in probability 
to h s as n tends to infinity, because Var(hs) tends to zero. The 
distribution of fis may be approximated by its limit: if the subsample 
sizes are bounded and if n-  ~ Zk  EVark(hk) has a limit as n tends to 
infinity, ~ ( f i s  - hs) converges in distribution to a Gaussian variable 
with zero mean and a variance as 2 which is the limit of nVar(fis) and 
which is unbiasedly estimated by ~s = n Vat(fits). 

The variance of h T is given by 

1 
V a F ( f i t T )  - -  g/2(g/_ 112 E E 2 { E X k i X l i  X u j  X v j  - -  p2 p]} 

*1 k # l u # v  i j  

and this sum develops according to the number of 
distinct indices for populations (among k, l, u, v). Since n 
is assumed to be large, the terms of order n-2 may be 
neglected and an approximation of fitr is obtained by 
deleting the terms of this sum having not at least three 
distinct summation indices. With the notation C,  = V~, 
we get 

4 
Var(fitr) = ~ ~ ~ Pi Pj {Exki xkj -- Pi P j} + 007 2) 

'~ k i j  

=7~P~PjC~j Pa-~P~Pj(PiPj+C~)i +0(n-2) - 
fl i j  n n  i j  

(13) 

This splits into a within-population variance 

1 
Varlmra(f i IT)  ~---n2(n _ 1)2 E E ~ E(XkiXuX,jX,q-- PkiPuPujP~j) 

k # l u # v  ij 

nH  ij  
(14) 

and a between-population variance 

^ 1 
- -P i  Pj )  Var i , ,~ (hr )  = n2( n -  1) 2 ~ ~ ~ E ( P k i P u P , j p ~ j  2 2 

k ~ l u C v  i j  

4 
=-~PiPj  Cij +O(n-2). 

n ij 
(15) 

Estimates of these variances are obtained by replac- 
ing C o. by its unbiased estimate 

C~j- 1 ~ ( X k i - - X . i ) ( X k j - - X . j ) + ! ~ ,  if i# j ,  n-- 1 nk--i 

and Cii = V i by 

1 x k i , - t l -  . 
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This provides the estimates 

~ar(fitr) = 4 (16) 

= 4 y ,  x ,  j d, j  
t l  i j  " " 

(17) 

and by difference, 

4 ~--x2 ~ Xki x .'~XkiXkj'Q 
= [} 

"7n k - 1 ij l /-~nk- l J(18 ) 

The covariance of fis and fir is approximated in a similar way. The 
between-population covariance is also of the order n-1 and the 
within-population covariance of the order (n~)- 1, their expressions 
and estimates are detailed in Appendix 1. 

Since 1/~ _< 1/2 i fn k > 2 for each k, ~'ar(fir) tends to zero as n ~ cc 
and hr converges in probability to h r (cf. Appendix 1). Furthermore 
nl/2 ( f i s -hs ,  h r - h r )  converges to a two-dimensional Gaussian 
variable its components having respectively variances a 2 = lim 
nVar(hs) and er r = lira, nVar(hr) and a covariance r = lim, nCov(hs, 
hr). 

Approximation of the variance of Gsr and 
optimal sampling design 

From the convergence results concerning (fit s -hs ,  
h r -hr) ,  the estimate Gsr (10) of the differentiation 
parameter converges to Gsr. Under the previous condi- 
tions, n 1/2 (Gsr - Gsr ) has the same limit distribution as 
hi~2 (~ts _ hs ) ( h r ) - 1  _ n l /2  (ritz - -  hr) hs(hr)- 2 which c o n -  

verges to a Gaussian variable having the mean zero and 
2 -4 2 the variance (hr)  - 2  o's 2 - 2h^s(hr)-a a2r + hs(hr) a r. If 

n is large, the variance of Gsr is then approximated by 

(hr)- 2 Var (fl~s) - 2hs(hr)-3 Cov(fl~s, fitr) + h2 (hr)- 4 Var (fir), 
(19) 

and an estimate of Var(Gsr ) follows as 

1 4fit s 
l/ar(Gsw)=n(n-- 1 ) ~  (fitk-/~s)2 (n-- 2)h~r 

{fi~s(l_fitr)_ l ~ 2 ( x i  Xki\^Xki } n-- l ki \ " - - n )  hk 

4~ 2 
+ n(n 7-1)~4 ~, x.i X4(Xki- X.i)(Xkj -- X4) 

~ T  k i j  

from (12), (16) and Appendix 1. 
The variance of Gsr may also be split into within- and between- 

population variances which satisfy a formula similar to (19) with the 
corresponding within and between terms. An approximation of the 
within-population variance of Gsr is for instance 

(hr)- 2 Vari.,~(fis ) _ 2hs(hr ) -3 Cov,.,~(fis, fir) 

+ h2(hr) 4Vari,,,,.a(fir), 
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an estimate of garimra (GsT) is deduced by replacing the different terms 
in this expression by their estimates and the same holds for the 
between-population terms. 
^ We proved t h a t  Vari,uer{fis), Varinter(flT), COVinte r 

(hs, hT), and therefore Vari,ter(Gsr), d 2 not depend onthe 
nkS whereas Vari,~a(hs), Vari,tr,(hT), Covi,,~,(hs, hT), 
and hence Vari,t,~(Gsr ), do. This decomposition of (19) 
into terms depending, or not depending, on the nkS may 
be used to find an optimal value of n which minimizes 
lZar(GsT ) in a sampling design with populations of equal 
sizes, ~, and when the total number n~ has a fixed value ~. 
In that case, using (11), (13), (19) and Appendix 1, 
Var(GsT ) is approximated in the form 

Table 1 Comparison of several methods of analysis of diversity of 
cpDNA in Quercus sp. The method used is given in brackets: (bias), 
uncorrected definitions of the parameter; (Nei), estimates of Nei and 
Chesser (1983); (Neib), alternative estimates of Nei (1986); (WC), 
estimates of Weir and Cockerham (1984); (PP), present study. SD, 
standard deviates of the estimates (PP) 

Haplotypes 1 2 3 4 Total 

Frequency 
hs(bias) 
hs(Nei) 
hs(WC) 
hAPP) 
SD 

hr(bias) 
A B 1 hr(gei) 

f(n,~) = - - + - - z  + -  { C ( 3 - 2 ~ ) + D ( f i - 2 ) + E } ,  hr(WC) 
n nn n~(fi-  1) hr(Pp) 

SD 
where A, B, C, D and E are approximately constants Gsr(bias ) 
under the conditions of the asymptotic normality of Gsr, Gsr(Nei) 
and are defined in Appendix 2. With n~ = e, f (n ,  fO Gsr(Neib) 
becomes O(WC) 

Gsr (PP) 
SD 

f ( n )  A B ( 3 n - 2 c  0 C + ( e - 2 n )  D + E  
= - -  + - + ( 2 0 )  

n n) 

and it is minimum at nov ~ such asf'(nopt) = 0, i.e., nov t is a 
solution ofn 2 (C - D + E - A) + 2nAc~ - Ac~ 2 = 0. If the 
discriminant A = Ac~ 2 (C - D + E) of this equation is posi- 
tive, the optimal values nov t and fiop~ of n and h follow, 

A - x / A ( C  - D  + E)  (21) 
nop t = c~ A - C + D - E ' 

A - C + D - E  
hopt (22) 

A - . / A ( C -  0 + E)" 

It is noticeable that fiovt does not depend on the total 
number e of individuals in the study, it is a constant 
which depends only on the distribution of the variables 
Pki. When A < 0, f (n )  is strictly decreasing to zero and 
Var(Gsr ) is minimum when n is maximum, i.e., no, t = c~/2 
and hopt = 2 since there must be at least two individuals 
in each population to estimate hs. 

An estimate of fiopt is obtained from (22), replacing the 
constants by estimates based on a preliminary sample 
with populations of possibly varying sizes n k. They are 
given more precisely in Appendix 2. 

Numerical example 

The data set that was used originates from a survey of 
the chloroplast DNA diversity of oaks in Europe (Petit 
et al. 1993). A total of 90 populations sampled over the 
European range are included here. Four cytotypes 
(Table 1) were detected in the survey. The analyses were 
made both at the level of the chloroplast locus and at the 
level of the individual cytotypes (by considering each of 

0.2288 0.3906 0.3584 0.0222 1.0000 
0.0328 0.0461 0.0416 0.0000 0.0707 
0.0385 0.0541 0.0488 0.0000 0.0707 
0.0389 0.0513 0.0525 0.0000 0.0714 
0.0379 0.0540 0.0481 0.0000 0.0700 
0.0132 0.0162 0.0166 0.0000 0.0184 

0.3529 0.4761 0.4599 0.0435 0.6661 
0.3530 0.4762 0.4600 0.0435 0.6663 
0.3372 0.4629 0.4880 0.0465 0.6673 
0.3565 0.4809 0.4646 0.0440 0.6730 
0.0460 0.0215 0.0275 0.0299 0.0161 

0.9071 0.9033 0.9096 1.0000 0.9096 
0.8909 0.8864 0.8938 1.0000 0.8939 
0.8920 0.8875 0.8949 1.0000 0.8949 
0.8845 0.8892 0.8924 1.0000 0.8949 
0.8936 0.8876 0.8964 1.0000 0.8930 
0.0381 0.0337 0.0333 - 0.0276 

the four cytotypes along with the pooled three remain- 
ing cytotypes are equivalent to four diallelic loci). The 
arithmetic and harmonic mean numbers of genotypes 
per population were respectively 8.02 and 6.73, for a 
total of 722 individuals analysed. Cytotype 4 was found 
only in two populations where it was fixed. 

Estimates 

First, our estimates were compared with the simple but 
biased estimates h s (7), hragiven by (3) where x.i replaces 
p~ and the corresponding GST = 1 -- h j h  T (Table 1). Note 
that h's and GST poorly estimate h s and GST as judged 
from their differences with the unbiased estimates. 

Second, our estimates were compared with those of 
Nei and Chesser (1983) and Weir and Cockerham 
(1984). All of them are quite close. Our estimate of h s is 
closer to Nei and Chesser's estimate h2s, whereas our 
estimate of h r is closer to that of Weir and Cockerham. 
This last result is expected since our estimates are valid 
for a larger set of populations than those sampled, like 
with Weir and Cockerham's method. For all three para- 
meters, our estimates should give exactly the same re- 
sults as those of Weir and Cockerham if all population 
sizes were identical. Here, this is not the case and the 
differences observed (especially for hs) probably derive 
from the way populations are weighted in the alternative 
estimations procedures. We assume that differences in 
sample sizes are independent of the true effective popu- 
lation sizes and all populations receive similar weights in 
the computations, as proposed by Nei (1987). In Weir 
and Cockerham's method, on the other hand, weights 
are proportional to the sample sizes. Hence, our esti- 
mates combine properties of both former methods. If a 
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lower number of populations had been sampled, our 
estimates would have been much more different from 
those of Nei and Chesser, since their estimates are not 
independent of the number of populations sampled. 

Variances 

We computed total, intra- and inter-population vari- 
ances for the estimates of h s, h r and Gsr. The results are 
given in Table 2. The estimates of h s and h r have similar 
variances but the estimation of Gsr (which directly 
derives from the other two parameters) is less precise. 
Moreover, the variance due to sampling within popula- 
tions accounted for a small fraction of the total variance 
for h s and Gsr and especially h r. This was a first 
indication that the sampling of populations, rather than 
that of individuals within populations, was limiting the 
precision of our Gsr estimates in this example. 

0.003 

0.002 
tO 
- -  I 

b 
> 0.001 

0 

200 / / - /  

i sou 
'5, ~ A o o o ~ !  
, ' ,  _ f ~ 5 0 0 0  

1 2 �88 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Number of individuots/popuLofion 

Fig. 1 Evolution of Var(Gsr ) as a function of the sample size per 
population, for fixed total sample sizes. The optimum (2:.5 individuals 
per population) corresponds to the smallest variance of Gsr for a fixed 
number of individuals analysed (ranging from 100 to 5 000) 

Table 2 Estimation of total, intra- and inter-population variance 
components of gene diversity and differentiation 

Item Variances x 104 

hs hr Gsr 

Variance (total) 3.38 2.60 7.64 
Variance (intra) 0.15 0.00 0.31 
Variance (inter) 3.23 2.60 7.33 

Optimal sampling design 

The proposed statistical methods make it possible to 
determine a posteriori what would have been an 'opti- 
mal' sampling design i.e., a sampling d~ign which would 
have yielded the smallest variance for Gsr with the same 
total sample size. It was indeed shown analytically that 
there is a unique sample size per population which is 
universally optimal (i.e., regardless of the total number 
of analyses made) in terms of minimizing the differenti- 
ation sample variance at a given locus. By estimating ~ovt 
(22), we find this optimal sample size per population to 
be 2.5. More precisely, if we had analysed 250 popula- 
tions instead of 90, with 2-3 individuals per population 
instead of the 6.7 actually studied (i.e., with the same 
total sample size of about 600 individuals), we would 
expect a variance of 4.3 x 10 .4 instead of the variance of 
7.6 x 10 .4 that we found. In Fig. 1, the relation between 
the expected variance of Gsr and the number of sampled 
individuals per population, fi, is illustrated in various 
situations where the total sample size Zk nk takes differ- 
ent values ranging from 100 to 5 000. It is apparent that 
the minimum variance is always obtained for ~--2.5, 
regardless of the total sampling effort. Moreover, it is 
also clear that, although the use of a slightly suboptimal 
sampling design may be tolerated for large samples, very 
significant losses in precision can be expected when the 
sample size uses either too many or too few individuals 

per population, though especially so when the number 
of individuals per population, fi, is smaller than the 
optimum. The very small value found for ~opt is striking, 
and indicates that our initial sampling scheme was 
adequate since it emphasised the sampling of as many 
populations as was possible, at the expense of the num- 
ber of individuals per population. 

Since the choice of the sample size per population 
may be dictated by considerations other than maximi- 
zing the precision of Gsr (as when precise estimates of 
allele frequencies are required for each population, or 
when gametic disequilibria need to be studied, etc.),we 
provide in Figs. 2 and 3 the evolution of variance of Gsr 
for a fixed number of individuals per population or for a 
fixed number of populations. For the cpDNA locus 
studied here, this gives predictions for the precision of the 

Fig. 2 Evolution of the variance of Gsr as a function of the sample 
size per population. The number of populations analysed are given 
for each curve. An increase in the number of individuals per popula- 
tion is soon inefficient in improving the precision of Gsr when the 
number of populations studied is limited 
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Fig. 3 Evolution ofthe variance of Gsr as a function ofthe number of 
populations analysed. The sample sizes per population are given for 
each curve. A continuous decrease in var(Gsr ) is achieved by increas- 
ing the total number of populations sampled 

measure of differentiation in a variety of sampling schemes. 
It is clear, from the comparison of both figures (note that 
very different scales are used), that increasing the number 
of populations is essential in order to reach reasonably 
precise estimates (Fig. 2), whereas, when the number of 
populations is limited, there is little point in increasing the 
sample size per population past values situated around five 
individuals per population, since the decay of Var(Gsr ) 
becomes very low after this limit (Fig. 3). 

Because the example studied included a case of rather 
extreme differentiation, it is unclear from the data whether 
optimal sample size will always be as low as that found 
here. We therefore computed Gsr and optimal sample 
sizes for 12 additional loci to further examine the rela- 
tionship between the level of differentiation and optimal 
sampling. The additional data (Petit and Bahrman, 
unpublished) were obtained in a study of six populations 
of maritime pine (Pinus pinaster Ait.) using isozymes and 
abundant  proteins (see Bahrman and Damerval 1989, 
for a study of inheritance of these markers). Sample sizes 
per population range from 32 trees for protein loci to 
overl20 for the isozyme data. The tissue analysed is the 
megagametophyte of the seeds, and the data obtained 
are therefore haploid for these nuclear genes. The values 
of differentiation obtained range from close to zero to 
over 0.3 depending on the locus. A relationship is appar- 
ent between optimal sample size and Gsr (Fig. 4). A 
higher within-population sampling is necessary for loci 
showing little differentiation. However, even in these 
cases, the optimal sample sizes remain relatively low by 
comparison to current sampling practices. 

Discussion 

A precise knowledge of the subdivision of genetic vari- 
ation within and among populations is of particular 
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Fig. 4 Relationship between optimal sampling and level of differenti- 
ation. The optimal sample size per population is plotted against the 
level of differentiation for nuclear loci (values of Gsr ranging from 0 to 
0.36) and for the chloroplast DNA locus (Gsr approximately 0.9). The 
higher the differentiation, the smaller the optimal sample size per 
population necessary to achieve a correct estimation of Gsr 

importance for the management of genetical resources. 
Indeed, genetically heterogeneous species will require 
different strategies of conservation than comparatively 
uniform species. A popular parameter used for such 
purposes is Fsr , the genetic differentiation first defined 
by Wright (1951), and generalised to multiple alleles and 
any ploidy levels by Nei (1973). Two of its properties 
probably explain its popularity. First, it is diversity 
independent, being defined as a ratio of gene diversities. 
Hence, measurements of genetical differentiation ob- 
tained with different (neutral) genetic markers, such as 
protein polymorphisms or coding or non-coding DNA 
polymorphisms, are expected to give similar values for 
differentiation regardless of their level of variability. 
Second, if a set of assumptions are verified, a population 
genetic model predicts that this parameter Fsr (or Gsr ) 
is related to the amount  of gene flow among populations 
in an island model of population structure (Wright 
1951). Therefore, a precise estimate of differentiation is 
necessary in order to obtain an estimate of gene flow. 

Our results indicate that, for accurate measurements 
of genetic differentiation at level of the single locus or 
allele, more extensive surveys of genetic variation are 
necessary than what is usually encountered. Note, for 
instance, that the average number of populations ana- 
lyzed in 655 studies of gene diversity in plants is only 
12.3 (compiled by Hamrick et al. 1992). 

Until now, a detailed study of the elementary compo- 
nents of gene differentiation at the single locus level has 
been lacking. Though tests of the null hypothesis of no 
differentiation have been proposed, either analytically 
(Long 1986) or using permutational procedures (Excof- 
fer et al. 1992), more general methods were still needed 
for the study of the heterogeneity of gene differentia- 
tion. This led us to develop variance estimates for all 
parameters of gene diversity, with a particular emphasis 
on Gsr, at the level of the individual locus or haplotype. 
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We also considered the optimal sampling strategy for 
the study of gene differentiation. Attempts to define 
optimal sampling strategies have already been consider- 
ed in the context of the collection of material for ex situ 
genetic conservation (Marshell and Brown 1975; Bogyo 
et al. 1980; Brown and Munday 1982; Yonezawa 1985). 
In these approaches, however, the goal is the collection 
of the maximal amount of 'genetically useful' variability, 
and not the study of the geographic distribution of 
diversity per se. The optimal strategy in then to collect a 
single individual from as many populations as is feasible. 
However, because the cost of collecting new populations 
is generally higher than the collection of additional 
individuals, the measure of the partitioning of variability 
within and among populations remains important in 
that context. If the estimation of the genetic differenti- 
ation is not the single goal, the definition of the optimal 
sampling strategy will have to be a compromise among 
conflicting sampling options. However, we reached the 
same main conclusion as did most previous published 
works, i.e., that an increase in the number of popula- 
tions, rather than of individuals per population, is of 
primary importance in surveys of genetic variation (see 
for instance Marshall and Brown 1975; Yonezawa 1985; 
Lynch and Crease 1990, in the context of the study of 
DNA sequence variation). In some of these papers, 
considerations of optimal sampling strategies are de- 
rived from the examination of the relative importance of 
intra- and inter-population variance components. In 
our study, by contrast, a direct estimate of the optimal 
sample size per population is derived. Completely unex- 
pectedly, it was shown to be independent of the total 
sampling effort. This is an interesting property in large- 
scale sequential studies. 

We also found that with increasing levels of genetic 
differentiation, decreasing optimal sample sizes per 
population will be necessary. Since our optimum samp- 
ling strategy is valid for a single locus or allele, it is not 
obvious for selecting a strategy in multilocus surveys if 
the level of differentiation is heterogeneous among loci. 
In that respect, Marshall and Brown (1975) recommen- 
ded the sampling of a small number of individuals per 
population, with the rationale that this strategy would 
still ensure the sampling of 'locally common' alleles in 
collections of germplasm. This assumes some heteroge- 
neity of differentiation among alleles or loci and empha- 
sizes the importance of the fraction of the genome 
showing the highest degree of population subdivision, 
because of its possible involvement in adaptation to 
local conditions. 

and 

^ ~ 2 (  1 ~  ~ "} 2 
Cov(hs, hr) =-  {hs(1 - hr) - - L p ,  g(hk xk,)} +O(n ) 

n (  nki  ) 

then, using 

^ n k -- 2 2 2 2 
E(hk Xki) = Pi -- 2 E(pki Pkj) -- - -  EPki, 

Hk j nk 
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They are unbiasedly est imated by 

2 f 1 / xki \  ^ "1 
Oov(/~, 'fir) = 7 ~ _  2 )  g ( 1 - -  hr)  - Z I X , - - - - | h k X k , Y  

n - - l k i  \ n J  J 
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and 

d~ 'fir) = Cov(hs, 'fir) - Cov~,,t~a(hs, hr). 

The asymptot ic  behav iour  of ,fir derives f rom studying n 1/2 
2 2 1/2 

~ i ( P l  - -  X i) or equivalently n ~_,i2pi(pi - x i) which have the same 
limit d is t r ibut ion  as n' /2 ('fir - hr). Now (x.i -p~)~ = n -  ~2t, {(Xk~ -- P~)~} 
is a normal ized  sum of independent  variables with zero m e a n  

2 and  a var iance mat r ix  with diagonal  terms ~rk~= n k 1 U , +  V,. 
2 - -  C i  j _ where Ui = Pi( 1 - Pl) - Vi and o ther  terms tTki j - -  

i 1 / 2  n]  (p~ pj + Ci.). If  the nkS are bounded ,  n (p~ - x i)~ converges to a 
Gauss ian  vanJable with zero mean  and  a finite var iance and n'/2(h s - 
h s, h r - hr)  converges to two-dimens ional  Gauss ian  variable. 

Appendix 2: Estimation of hopt 

The terms A, B, C, D, and  E appear ing in (20) are defined by 

^ nh~ ^ 2nh s ^ ^ 
n Vari.t~,(hs) + ~ r  Vari"t~(hr) A = ~ T  --'-~TT C~ 

h s ^ 2c& s ^ - 
B = ~ Vari"t"(hr) - ~ r  C~ hr) '  

c= E , 
T \ i  / 

Appendix 1: covariance of/Ts and hT 

As ; ,  = n L and from (9) 

1 ^ ^ 

E(hshr )  = hs n2(n ),,~.kl 

2 3 
D = 7-ff E ~ pki 

hr  i ' 

2 2 

An est imate of ~ is defined in the same form replacing each term of opt . 
the above  expressions by the est imate defined in the previous sections. 
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